

Site Selection and Deployment Scenarios For Servicing of Deep-Space Observatories HARVEY J. WILLENBERG

Boeing Human Spaceflight and Exploration

- Summary of key characteristics of future observatories designed to operate at the Sun-Earth Lagrange point
- Defines range of servicing missions with teleoperated robots and autonomous robots
- Trade study of alternative servicing sites: ISS and other LEO locations, lunar orbit and Earth-Sun L2

A Taxonomy of Potential Cooperative Human/Robotic Roles in Extravehicular Operations DAVID L. AKIN

University of Maryland – Space Systems Lab

Artificial Gravity

LAURANCE YOUNG and HEIKO HECHT

Massachusetts Institute of Technology

- Artificial Gravity is the single most promising Countermeasure against space adaptation syndrome
- Long-term human space missions will most likely have a short-radius centrifuge (combined with exercise equipment) on board
- Preliminary ground-based studies show great promise regarding the feasibility of short-radius centrifugation
- Further ground-based research as well as flight experiments with a human centrifuge are indispensable

Open Future Functionality

DAN FISCUS

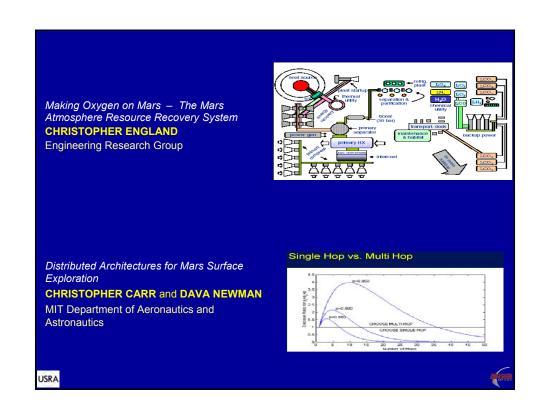
University of Maryland – Appalachian Lab

- How these concepts would impact synergistic operation of humans and robots
- · Enhanced science that would be enabled

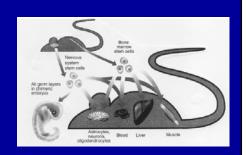
USRA

Robotic Outposts

WENDELL H. CHUN


Lockheed Martin Space Systems Company

Traverse Planning for Mars Surface Exploration CHRISTOPHER CARR and DAVA NEWMAN MIT Department of Aeronautics & Astronautics



Human/Robotic Hematopoietic Stem Cell Therapy and Gene Therapy for Exploration of the Solar System

SEIGO OHI

Howard University and Hospital

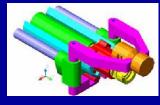
Cybernetic Integration of Human-Robot Systems

THOMAS J. SMITH ROBERT A. HEMMING

University of Connecticut

- Human-robot interaction modeled and characterized as a social cybernetic process
- Human participants are allocated primary feedforward control, and computer-robot participants primary feedback control.

USRA


Advanced Revolutionary Concepts for On-orbit Assembly of Large Structures

EDWARD J. FRIEDMAN

The Boeing Company

- Integrated modeling of optics, structures and control
- Humans at L2 and beyond
- · Structural concepts
- · Precision low mass structural joints
- Deployment versus assembly in space
- Active versus passive control

Engineering The Future SUPARNA MUKHERJEE and CHRIS CHAPMAN Honeybee Robotics, Ltd.

Open Future Functionality

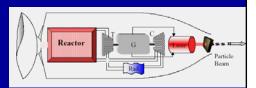
DAN FISCUS

University of Maryland – Appalachian Lab

- How these concepts would impact synergistic operation of humans and robots
- Enhanced science that would be enabled

The Role of Robotics in Human Mars Surface Exploration

MICHAEL SIMS


NASA Ames Research Center

- A classification of needed planetary surface
- A program to understand needs
 Makes a case for an ongoing, orderly process that builds on strengths of the past and stays focused on clear goals

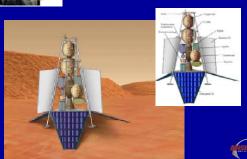
A Near-Term Propulsion System for Human/Robotic Exploration of the Solar System

TERRY KAMMASH

University of Michigan

USRA

Eureka Scientific



In-Situ-Refueled Rocket "Hopper" for Mars Exploration

GEOFFREY LANDIS and **DIANE LINNE**

NASA John Glenn Research Center

NIAC Phase I Call for Proposals, CP 01-02

Can be downloaded from NIAC website: http://www.niac.usra.edu

Proposals Due: February 11, 2002

Technical Proposal: 12 pages, 300K, submitted electronically only

\$75K Grant

Performance Period: up to six months

Phase I recipients become eligible to submit Phase II proposal

USRA

NASA Institute for Advanced Concepts

Visionary Challenges Listed in CP 01-02

- Fulfill the human desire to understand our place in the universe.
- · Seek knowledge to understand how we evolved and what is our destiny.
- Search for life in the universe and understand cosmological phenomena.
- Pursue the fascination of space and satisfy the human drive for exploration of the vastness of space, often at great risk.
- Make possible the safe, affordable and effective exploration, development and self-reliant habitation of our solar system – and eventually space beyond our solar system – by humans and their agents.
- Mediate the effects of the space environment, such as microgravity and radiation, on humans and other living things,
- Provide seamlessly integrated, safe, reliable, fast and efficient transportation network from the Earth's surface to distant locations in space as well as portal to portal on the Earth's surface.
- Understand the influence on the Earth system of the actions of mankind, the natural cyclic phenomena in the Earth's system and the interaction of the Sun-Earth system.
- Create tools and techniques to access, visualize and interpret data and model findings.
- Predict the future evolution of the Earth system and its relationship to natural phenomena and human activity, and validate this predictive capability.

